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Equilibrium of an elastic finite cylinder: Filon’s problem revisited
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Abstract. This paper deals with an analytical solution of the axisymmetric boundary-value problem of the theory
of elasticity for a finite circular cylinder with free ends and arbitrary loaded curved surface. The object of this
paper is to employ the method of superposition to obtain accurate values of the stress field near the boundaries.
The classical Filon (1902) problem of uniformly distributed tangential load applied along two rings at the curved
surface is addressed in full detail. The distribution of stresses along some typical sections of the cylinder are shown
graphically.
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1. Introduction

This paper considers the axisymmetric distribution of stresses and displacements in a finite
elastic cylinder under nonuniform and discontinuous loading applied at its curved surface. An
analytical method is presented and relevant results are discussed in an historical perspective.

The problem of equilibrium of an elastic cylinder of finite length subjected to a surface load
on its surface is one of the oldest problems in the theory of elasticity.1 Elementary solutions for
the extension and compression of circular elastic bars (short cylinders) traditionally assume
that they are subjected to a normal tension or pressure uniformly distributed across the ends. It
follows that the extension or compression are transmitted throughout the bar without change.
Such applied loadings, however, do not usually occur in practice.

In an extensive memoir [1] submitted to the Royal Society on May 20, 1901 (see also a
detailed abstract [2]) Filon addressed several problems concerning distributions of stresses
and displacements in a circular elastic finite cylinder under some axisymmetric systems of
surface loadings. In particular, Filon was interested to find out how the results obtained for
such a theoretical system of loading are modified, if at all, when we consider applied external
stresses, which give a closer representation of practical mechanical conditions, and considered
in great details the typical case when shearing pull loading is applied at the curved surface of
the cylinder. He argued [1, p. 148]

1Already in 1846 the competition for the Grand Prix de Mathématiques of the Academy of Science of Paris for a
solution of this problem was announced for the year 1848. According to the announcement published in Comptes
rendus des séances de l’Académie des Sciences, 22, 768–769 (séance du 11 mai 1846) the condition for the award
was: ‘Trouver les intégrales des équations de l’équilibre intérieur d’un corps solide élastique et homogène dont
toutes les dimensions sont finies, par exemple d’un parallélipipède ou d’un cylindre droit, en supposant connues
les pressions ou tractions inégales exercées aux différents points de sa surface. Le prix consistera en une médaille
d’or de la valeur de troix mille francs.’ There were no entries and the committee initially consisted of Arago,
Cauchy, Lamé, Sturm and Liouville. They suggested this topic (along with the last Fermat theorem!) then two
times for the years 1853 and 1857. It had been prolonged for the year 1861, but already in 1858, by a committee
consisting of Liouville, Lamé, Duhamel and Bertrand, was changed into another question.
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Figure 1. Filon’s [1] sketch of a specimen in a testing machine.

This will give us valuable information about a system of stress which often occurs in
practice, in testing machines, for example, in which a specimen is pulled apart by means
of pressures applied to the inner rims of projecting collars (see Figure 1). The shaded
parts of the figure represent the ‘grips’, and if S be the total pull applied, this is trans-
mitted to the test piece by means of presure applied along CA, C′A′. Now consider the
thinner cylinder in the middle ideally produced inside the thicker ends. It is in equilibrium
under the stresses, radial and tangential, between the inner core and the hollow cylinder
produced by the revolution of ABCD.

But what are these radial and tangential stresses? If we consider the equilibrium of the
outer hollow cylinder only, we see that the resultant of the stresses across AB, A′B′ must
exactly balance the pull S, however applied. The radial stress will probably be small, as
it has no external traction to balance, and the longitudinal shears are therefore equivalent
to S. Thus the thin cylinder inside is really stretched, not by normal traction over the flat
ends, but by longitudinal shears over the curved surface, and a careful investigation will
show that, in every practical case, extension is obtained by the application of an axial
shear to the curved surface of the cylinder, never of tractions to the flat ends. The general
effects of such a distribution appear, therefore, of great practical interest.

The analytical solution of the equations of elasticity in cylindrical coordinates was chosen
in the typical form of ordinary Fourier series on the complete systems of trigonometric func-
tions of the axial coordinate. The arbitrary coefficients entering into functions of the radial
coordinate are determined by comparison with the coefficients of the Fourier series which
express the applied stresses at the curved boundary.

Filon pointed out that this method is not new, for it had already been indicated by Lamé
and Clapeyron [3], (that time the colonels du génie au service de Russie), and he provided
a short review of previous studies by Pochhammer [4] and Chree [5]. In an additional note
Filon [1, p. 151] mentioned that the eigenfunctions-expansion approach to solve the problem
suggested by Schiff [6] leads to certain transcendental equations and non-orthogonal systems
of functions that essentially complicates the solution from a numerical point of view.

Filon performed extensive numerical calculations for a cylinder with a length that is about
three times greater than the radius loaded in such a way that the two rings of uniform shear
each extend over one-sixth of the length and are at equal distances from the mid-section
and the two ends, and presented the results both in several tables and diagrams that show
distributions of the displacements and stresses. His table for the axial stress data has often
been reproduced, see, for example, [7–10]. Filon claimed that a self-equilibrating system of
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radial shears at the flat ends will have little or no effect at points at some distance from the flat
ends, but since then there have been no attempts to check this statement.

The main object of this paper is to address anew the Filon problem with special attention
paid to the stress field in the cylinder near its rims. We use an analytical solution of the
problem obtained by the method of superposition. This method for axisymmetric problems
of an elastic equilibrium of a finite cylinder was first suggested by Purser [11], but that
paper has gone almost unnoticed, except for the study by Pickett [12]. The interest in the
method of superposition was revived only in the fifties of the twentieth century when almost
simultaneously two papers [13, 14] were published. By means of this approach Grinchenko
[15, 16] considered thermal and centrifugal stresses in a finite elastic cylinder. These results
were partially reproduced in [17]. A detailed survey of studies based upon the method of
superposition can be found in [18].

The paper is organized as follows: the formulation of the problem is outlined in Section 2.
The analytical method of superposition is described in Section 3, along with theoretical con-
siderations about the stress field due to the discontinuous tangential load at the surface of the
cylinder. Next, Section 4 describes numerical results concerning the distribution of stresses
and displacements in comparison with Filon’s example. Finally, some conclusions are given
in Section 5.

2. Statement of axisymmetric problem for an elastic cylinder

Let us consider a circular finite elastic cylinder 0 ≤ r ≤ a, 0 ≤ φ ≤ 2π , −c ≤ z ≤ c (where
r, φ, z being the usual cylindrical coordinates) which is subjected to an axisymmetric system
of normal radial pressures and of tangential shears all over the curved surface; the plane ends
are free from loadings.

If u and w denote the radial and longitudinal components, respectively, of the displacement
vector, and they are independent of φ, we have two Lamé equations
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where λ and µ are the elastic modulae of Lamé.
The stress components are related to the displacements by means of Hooke’s law and the

Cauchy relations
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Here and in what follows s
�
t denotes the stress, parallel to ds, across an element of surface

perpendicular to dt , s and t standing for any two of the letters r, φ, z.
We will construct an analytical solution of a problem that is symmetric with respect to the

plane z = 0 concerning the equilibrium of an elastic cylinder under the loadings
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r
�
r = p(z) , r

�
z = s(z) at r = a ,

z
�
z = 0 , r

�
z = 0 at z = ± c ,

(3)

where p(z) and s(z) are given even and odd functions of z, respectively, with s(c) = 0.
Below we will consider two types of loadings: smooth normal and tangential loads and a

discontinuous tangential loading. In particular, we will address the special case (which was
considered in detail by Filon [1]) when the normal pressure is zero throughout, while the
tangent loading s(z) represents a constant axial shear S acting over two equal rings on the
curved surface of the cylinder, so that

p(z) = 0 , s(z) =




0, |z| < c1 |z| > c2

S, c1 ≤ z ≤ c2

−S, −c2 ≤ z ≤ −c1

(4)

with 0 < c1 < c2 < c. Important cases of discontinuous normal loading, concentrated normal
or tangential forces acting at the curved surface can be considered either in a similar way or
be obtained by the obvious limits from the previous cases.

3. Method of solution of the problem

The analytical solution of the boundary-value problem (1), (3) for the elastic cylinder consists
of two steps. First, we need to construct the solution of the Lamé equations (1) in cylindrical
coordinates. Second, we need to satisfy all boundary conditions (3) by means of a properly
chosen representation for the displacement vector. As a rule, the second step is a far more
difficult task in the whole solution process.

3.1. CONSTRUCTION OF THE SOLUTION OF THE LAMÉ EQUATIONS

There exist several approaches to solve Equations (1) in cylindrical coordinates. We mention
here only two of them.

Filon [1] established that both ∂u/∂z and ∂w/∂r satisfy the partial differential equation

(ϑ2 + D2)2 y = 0 , (5)

with

ϑ2f = ∂

∂r

(
1

r

∂(rf )

∂r

)
, D2f = ∂2f

∂z2

and presented the solutions of these equations in terms of combinations of the trigonometric
and Bessel functions.

Love [19, Section 188], established that for any axisymmetrical strain in an elastic body of
revolution the displacements and the stress components can be expressed in terms of a single
function χ as

u = −1 + σ

E
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∂r∂z
, w = 1 + σ

E

{
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∂r2
+ 1

r
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}
, (6)
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Here and in what follows ∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
denotes the Laplace operator, the sub-

jects of operation being independent of the circumferential coordinate φ. The quantities E =
µ(3λ + 2µ)

(λ + µ)
and σ = λ

2(λ + µ)
are Young’s modulus and Poisson’s ratio, respectively.

The function χ satisfies the biharmonic equation

∇2∇2χ = 0 . (8)

Since then Love’s representation of the general solution was widely used by Timoshenko
[7–9]. It is interesting to note that much later Filon also used that representation when consid-
ering [20, Section 7.04], the problem of elastic equilibrium of an infinite cylinder under the
action of concentrated shearing forces at its surface.

3.2. FILON’S SOLUTION

Filon [1] presented the solutions of Equations in terms of combinations of trigonometric
and Bessel functions and constructed the representations for the displacement components
as follows:

u = u0 r −
∞∑

n=0

[
A

(n)

1 I1(κnr) + C(n)rI0(κnr)
] cos κnz

κn

,

w = w0 z +
∞∑
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] sin κnz
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,

(9)

where κn = (2n + 1)π

2c
. Here

u0 = λ + 2µ

2µ(3λ + 2µ)
p(c) , w0 = − λ

µ(3λ + 2µ)
p(c) ,

and the coefficients A
(n)
1 , A

(n)
2 , and C(n) are expressed via Fourier coefficients of expansions

of the functions p(z) − p(c) and s(z) on complete systems cos κnz and sin κnz, respectively.
The corresponding expressions for the stresses r

�
r, z

�
z, and r

�
z are recorded in [1, p. 157].

For the particular case of discontinuous pure shearing loading (4) Filon gave explicit ex-
pressions for the displacements and stresses, and performed extensive numerical calculations
with these Fourier series. He presented the results in several diagrams and tables that show the
distributions of displacements and stresses in the cylinder. Some of these data are reproduced
below in Figures 1a–3a and Tables 3–4 (in braces).

The solution (9) provides zero normal stress z
�
z at the plane ends of the cylinder, but it also

gives a system of finite shear stress r
�
z, which is, however, self-equilibrating. The shear is zero

at the center and at the circumference, and its greatest value does not exceed about 0·25S.
Filon stated that the effects of this system, at some distance inside the cylinder, will therefore
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(according to the Saint-Venant principle) be small compared with the effects of the large and
unbalanced lateral distribution of shear.

3.3. GENERAL SOLUTION OF THE BOUNDARY-VALUE PROBLEM

We employ the method of superposition to construct the solution of the boundary-value prob-
lem (1)–(3). The idea of this method consists of using the sum of two ordinary series on the
complete systems of trigonometric and Bessel functions in z and r coordinates, respectively.
These series both satisfy identically the governing equations inside the cylindrical domain and
have sufficient functional arbitrariness for fulfilling the two boundary conditions on the curved
surface and the two flat ends. Because of the interdependency, the expression for a coefficient
of a term in one series will depend on all coefficients of the other series and vice versa.
Therefore, the final solution requires the solution of the infinite system of linear algebraic
equations giving the relations between the coefficients and loading forces.

To construct the general solution of Equations (1) adjusted with the boundary conditions
(3) let us choose the biharmonic function χ in the form

χ = B0z
3 +

∞∑
j=1

(
Aj

sinh λjz

sinh λjc
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sinh λjc
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λ2
j
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2z +

∞∑
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[
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I0(knr)

I1(kna)
+ Dnr

I1(knr)

I1(kna)

]
sin knz

k2
n

,

(10)

where kn = nπ

c
, and λj is a non-zero root of the equation J1(λja) = 0. Real constants

An,Bn, Cj ,Dj are yet arbitrary; they are to be determined from the boundary conditions.
The stresses corresponding to (10) are given by Equations (7):
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The structure of these expressions is obvious: the Dini and Fourier-Bessel series on the
complete systems {1, J0(λj r)} and J1(λj r), respectively, with two sets of constants Aj and
Bj are capable of representing any assigned distribution of z

�
z and z

�
r at z = ± c. Similarly,

the Fourier series on the complete trigonometric systems {1, cos knz} and sin knz with two sets
of arbitrary constants Cn and Dn can represent any assigned distribution of r

�
r and r

�
z at r = a.

Therefore, from the very beginning the expressions for r
�
r, z

�
z and r

�
z appear to be capable to

represent any stress distribution for which the boundary conditions (3) have to be satisfied.
To proceed further with this solution, let assume that the surface shearing load s(z) is

represented by the Fourier series

s(z) =
∞∑

n=1

(−1)n sn sin knz , sn = (−1)n

c

∫ c

−c

s(z) sin knz dz . (14)

Then the boundary conditions for r
�
z everywhere on the surface of the cylinder lead to the

relations

Ajλj = −Bj (2σ + λjc coth λjc) ,

Cnkn = −Dn

[
2 − 2σ + kna

I0(kna)

I1(kna)

]
+ (−1)nsn .

(15)

With these relations the boundary conditions (3) for normal stresses at the surface of the
cylinder provide two functional equations containing two sequences of constants Bj and Dn:

p(z) = 6σB0 + (4σ − 2)D0

+
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0 = (6 − 6σ )B0 + (8 − 4σ )D0 +
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with the notation

dn = I0(kna)

I1(kna)
.
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Multiplying both sides of Equation (16) by cos knz dz and integrating over the interval (−c, c),
and multiplying the both sides of the Equation (17) by rJ0(λj r) dr and integrating over the
interval (0, a) or, equivalently, by expanding the normal stresses r

�
r at r = a into the Fourier

series and the normal stresses z
�
z at z = c into the Dini series by means of expansions (A1),

(A4), (A5), after some computations we obtain two equations for defining B0 and D0

6σB0 + (4σ − 2)D0 = p0 , (6 − 6σ )B0 + (8 − 4σ )D0 = g0 , (18)

and an infinite system of linear algebraic equations:

Xn Pn −
∞∑
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Yj

4k2
n(

λ2
j + k2

n

)2 = fn , n = 1, 2, . . .

Yj 
j −
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Xn

4λ2
j(

k2
n + λ2

j

)2 = gj , j = 1, 2, . . .




, (19)

where new unknown coefficients Xn and Yj appear instead of Dn and Bj :

Xn = (−1)n Dn
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a
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a
, Yj = −Bj
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c
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k2
n

, 
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sinh2 λjc

)
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are introduced. The right-hand sides in Equations (18) and (19) are defined as follows
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(
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n
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]
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a
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, gj = 4λ2
j

a
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k2
n + λ2

j

)2 + 2

a
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k2
n + λ2

j

. (23)

Here the sequence p0, (−1)n pn defined as

p0 = 1

2c

∫ c

−c

p(z) dz , (−1)n pn = 1

c

∫ c

−c

p(z) cos knz dz (24)

represents the Fourier coefficients of the normal loading p(z) with

p(z) = p0 +
∞∑

n=1

(−1)n pn cos knz . (25)

Next, the definition (14) of sn and expansions (A2), (A3) permit one to represent the expres-
sions for g0 and gj in the form of rather simple integrals:

g0 = 1

ac

∫ c

−c

s(z)z dz ,

gj = 1

a

∫ c

−c

s(z)

[
λjz

cosh λjz

sinh λjc
− (1 + λjc coth λjc)

sinh λjz

sinh λjc

]
dz .

(26)
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The system consisting of the two Equations (18) for the determination of B0 and D0 cor-
responds to the elementary solution with uniform distribution of normal stresses throughout
the finite cylinder. It is interesting to note that the values B0 and D0 depend not only upon the
non-equilibrating part of the normal loading at the cylindrical surface, but also upon of the
distribution of shearing loadings.

3.4. ANALYSIS OF THE INFINITE SYSTEM

An obvious way to obtain a solution of the infinite system (19) consists of a simple reduction
to a finite system. In other words, this is achieved by regarding the number of unknowns and
equations as finite by setting

Xn = 0, (n > N) Yj = 0, (j > J ) , (27)

solving the finite system of N + J equations to obtain approximate values for a finite number
of first unknowns Xn and Yj , and then finding the limits towards which the values of unknowns
converge as the numbers N and J of equations involved increase. The justification of such an
approach is based on the notion of regular infinite systems.

By means of sums (A7) and (A9) we have the the equalities

1

Pn

∞∑
j=1

4k2
n(

λ2
j + k2

n

)2 = 1 − ψn, ψn = 2 + 2σ )

k2
nPn

1


j

∞∑
n=1

4λ2
j(

k2
n + λ2

j

)2 = 1 − φj , φj = 2

λ2
j
j

.

(28)

Obviously 
j > 0 and it can be shown, following [10], that Pn > 0. Next, the sequences ψn

and φj are positive definite and none of their terms becomes equal to unity for all values of
n and j . This means that the infinite system (19) is regular. According to the general theory
of infinite systems [21], the regular infinite system (19) has a unique bounded solution, if its

right-hand-side terms
fn

Pn

and
gj


j

decrease at least at the same rate (or faster) as the sequences

ψn and φj when n → ∞ and j → ∞, respectively.
It can be readily shown by means of Equation (A12) that

Pn = a

kn

− 1 − 2σ

k2
n

+ O

(
1

n3

)
, ψn = O

(
1

n

)
, n → ∞ , (29)


j = c

λj

+ O(exp(−j)) , φj = O

(
1

j

)
, j → ∞ . (30)

If the functions p(z) and s(z) are continuous functions with continuous second derivatives,
one obtains by means of the usual procedure of integration by parts in (24) and (26),

fn = 2p′(c)
ck2

n

+ O

(
1

n3

)
, n → ∞ , gj = 2s′(c)

aλ2
j

+ O

(
1

j 3

)
, j → ∞ . (31)

For Filon’s example (4) of discontinuous tangent loading s(z) the sequence sn is

sn = (−1)n 2S

ckn

(cos knc1 − cos knc2) , (32)
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and the free terms fn and gj due to Equation (A12) have asymptotic behaviour

fn = O

(
1

n2

)
, n → ∞ , gj = O(exp(−j)) , j → ∞ . (33)

Comparing Equations (31) and (33) with Equations (29) and (30) we conclude that the condi-
tion for existence of the unique bounded solution is fulfilled for both cases of loading.

The method of simple reduction is a traditional approach for the wide range of boundary-
value problems in engineering mathematics. The solutions of these problems are usually
chosen in such a way that terms in the Fourier series like Equations (11)–(13) decrease
exponentially when proceeding from the boundary into the domain. Therefore, any small
variations in the coefficients Xn and Yj would not change considerably the main field inside.
It is important to note that the governing equations inside a domain are satisfied identically
for any values of the coefficients Xn and Yj , and the accuracy of satisfying the prescribed
boundary conditions is the single criterion for the quality of the solution. In the majority of
publications this principal question has been pointed out only scarcely, though; see [18] for an
exellent discussion of all the details.

To obtain the correct values of the normal stresses near the rim we need to know the
asymptotic behaviour of the unknowns Xn and Yj for n → ∞ and j → ∞, respectively.
Based upon Koialovich’s [22] theory of limitants, Grinchenko [15, 16] established that the
asymptotic behaviour of the unknowns is

lim
n→∞ Xn = lim

j→∞ Yj = G (34)

with some mutual constant G which is, in general, not equal to zero. He suggested the im-
proved reduction approach by setting in the first N and J equations in (19)

Xn = XN, n > N , Yj = YJ , j > J , (35)

for sufficiently large N and J , which replaces the infinite system by a finite system of N + J

equations. This method of improved reduction allows us to considerably increase the accuracy
in finding all unknowns based on the solutions of the first equations.

We propose another effective approach (which is closely connected with the behaviour of
the stress field near the rim of the cylinder, as it will be shown below) of finding the value G

which runs as follows. Let us put

Xn = G + xn , Yj = G + yj , (36)

with the asymptotic behaviour of the new unknowns xn and yj

xn = o(1), n → ∞ , yj = o(1), j → ∞ . (37)

Then by using the values of sums (A7) and (A9) and notations (21), one obtains

xn Pn −
∞∑

j=1

yj

4k2
n(

λ2
j + k2

n

)2 + G
2 + 2σ

k2
n

= fn, n = 1, 2, . . .

yj 
j −
∞∑

n=1

xn

4λ2
j(

k2
n + λ2

j

)2 + G
2

λ2
j

= gj , j = 1, 2, . . .




. (38)
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Next, let us sum the first set of Equations (38) with respect to n, and the second set with
respect to j and then change the order of summing in the double series. These operations are
justified by the asymptotic behaviour of xn and yj , Pn and 
j , and fn and gj as given by
Equations (37), (29–31). By means of the sums (A8), (A10), (A11) one obtains two equations

∞∑
n=1

xn Pn −
∞∑

j=1

yj

c

λj

(
coth λjc − λjc

sinh2 λjc

)
+ G

(1 + σ )c2

3
=

∞∑
n=1

fn ,

∞∑
j=1

yj 
j −
∞∑

n=1

xn

[
a2

(
1 − d2

n

) + 2adn

kn

]
+ G

a2

4
=

∞∑
j=1

gj .

Finally, adding these two equations and taking into account Equations (25) when z = c and
(23) for gj one obtains

G

[
(1 + σ )c2

3
+ a2

4

]
= p(c) − p0 +

∞∑
n=1

sn

[
2kna

(
1 − d2

n

) + 4dn − 1 + 2σ

2kna

]

−
∞∑

n=1

xn

[
2a2

(
1 − d2

n

) + 4adn

kn

+ 2 − 2σ

k2
n

]
−

∞∑
j=1

yj

2c2

sinh2 λjc
. (39)

In this equation the multiples of xn and yj in the right-hand-side sums decrease rapidly, espe-
cially in the sum with respect to j . Therefore, the values of the first few terms of xn and yj

can provide an accurate value of G which does not essentially change when the numbers N

and J in the finite system are increased.
Thus, the finite number of the coefficients xn, yj , and G can be found when solving the

finite system corresponding to (38), leaving in it only the first N and J unknowns xn and yj ,
respectively, and the additional Equation (39). It is important to note that the solution of this
finite system provides, according to (36), knowledge about all coefficients Xn and Yj .

3.5. STRESS FIELD IN THE CYLINDER

By means of the sequences of coefficients xn (n = 1, . . . , N), yj (j = 1, . . . , J ), G, and sn

(n = 1, 2, . . . ), the biharmonic Love function can be written as

χ = B0z
3 + D0r

2z + χs + GχG

+c

J∑
j=1

yj Z(z)
J0(λj r)

λ4
j J0(λja)

+ a

N∑
n=1

(−1)n xn

k4
n

R(r) sin knz , (40)

where

χs =
∞∑

n=1

(−1)n sn

k3
n

[
knr

I1(knr)

I1(kna)
− (1 − 2σ + knadn)

I0(knr)

I1(kna)

]
sin knz , (41)

χG = c

∞∑
j=1

Z(z)
J0(λj r)

λ4
j J0(λja)

+ a

∞∑
n=1

(−1)n

k4
n

R(r) sin knz . (42)

and
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Z(z) = (2σ + λjc coth λjc)
sinh λjz

sinh λjc
− λjz

cosh λjz

sinh λjc
,

R(r) = knr
I1(knr)

I1(kna)
− (2 − 2σ + knadn)

I0(knr)

I1(kna)
.

By means of series expansions (A1)–(A6) and after some transformations, we obtain

χG = (4σ − 8)S5(z) +
∞∑

j=1

[
4σ − 4

λ2
j

S3(z) − 4σ

λ4
j

S1(z)

]
J0(λj r)

J0(λja)
(43)

where the sums are defined as follows:

S1(z) =
∞∑

n=1

(−1)n

kn

sin knz = −z

2
, S3(z) =

∞∑
n=1

(−1)n

k3
n

sin knz = z3 − zc2

12
,

S5(z) =
∞∑

n=1

(−1)n

k5
n

sin knz = 3z5 + 10z3c2 − zc4

720
,

and, after summation with respect to r

χG = (4σ − 8)S5(z) + (4σ − 4)S3(z)R2(r) − 4σS1(z)R4(r) , (44)

where

R2(r) =
∞∑

j=1

J0(λj r)

λ2
j J0(λja)

= r2

4
− a2

8
,

R4(r) =
∞∑

j=1

J0(λj r)

λ4
j J0(λja)

= a4

192
+ r2a2

32
− r4

64
,

By means of (7) and (40) we can straightforwardly express the stresses in the whole
cylinder, including its boundary with the rims. The terms corresponding to G are

r
�
rG = G

[
1 + σ

2

(
z2 − c2

3

)
− σ

r2 − a2

8

]
, z

�
zG = G

(
a2

4
− r2

2

)
,

r
�
zG = 0 , φ

�
φG = G

[
σ

(
z2 − c2

3

)
− σ

(
r2

2
− a2

4

)
− 1

]
. (45)

It is important that there is a finite input of terms with factor G into the values of the normal
stresses r

�
r, z�z, φ�φ on the rim r = a, z = c. This proves that the simple reduction method (27)

of solving the infinite system (19) produces errors in the determination of the normal stresses
r
�
r, z

�
z, φ

�
φ near the rim of the cylinder due to the nonuniform convergence of the series with

functions like
I0(knr)

I1(kna)
and

cosh λjz

sinh λjc
near r = a and z = c, respectively. These errors can

not be decreased by increasing indefinitely the numbers N and J in the reduced finite system.
This circumstance was first pointed out by Grinchenko [18].

The convergence of the infinite series for that part of the stresses which depend upon
coefficients sn can be accelerated by means of the semi-convergent expansions of the modified
Bessel functions when their arguments are fairly large
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I0(kr)

I1(ka)
=

√
a

r
e−k(a−r)

(
1 + 1

8kr
+ 3

8ka
+ O(k−2)

)
,

I1(kr)

I1(ka)
=

√
a

r
e−k(a−r)

(
1 − 3

8kr
+ 3

8ka
+ O(k−2)

)

when k → ∞ and r approaches a. Doing so we obtain

(r
�
r)s =

∞∑
n=1

(−1)nsn

{[
knadn

I0(knr)

I1(kna)
− knr

I1(knr)

I1(kna)
− dn

aI1(knr)
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−(1 − 2σ )I1(knr)

knrI1(kna)

]
−
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8r
− 3r

8a

]√
a

r
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}
cos knz

+(a − r)

√
a

r
S(1)(r, z) +

(
5

4
− 7a

8r
− 3r

8a

) √
a

r
S(0)(r, z) ,

(46)

(z
�
z)s =

∞∑
n=1

(−1)nsn

{[
knr

I1(knr)

I1(kna)
+ (3 − knadn)

I0(knr)

I1(kna)

]

−
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4
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+ 3r
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a

r
e−kn(a−r)
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√
a

r
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7

4
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8r
+ 3r
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a

r
S(0)(r, z) ,

(47)

(r
�
z)s =

∞∑
n=1

(−1)nsn

{[
knr

I0(knr)

I1(kna)
+ (1 − knadn)

I1(knr)

I1(kna)

]

−
[
kn(r − a) + 1

4
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8r
+ 3r

8a

] √
a

r
e−kn(a−r)

}
sin knz

+(r − a)

√
a

r
T (1)(r, z) +

(
1

4
+ 3a

8r
+ 3r

8a

) √
a

r
T (0)(r, z) ,

(48)

where the notations

S(1)(r, z) =
∞∑

n=1

(−1)nsnkne−kn(a−r) cos knz ,

S(0)(r, z) =
∞∑

n=1

(−1)nsne−kn(a−r) cos knz ,

(49)

and

T (1)(r, z) =
∞∑

n=1

(−1)nsnkne−kn(a−r) sin knz ,

T (0)(r, z) =
∞∑

n=1

(−1)nsne−kn(a−r) sin knz .

(50)
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are introduced.
For the concrete values of sn in Filon’s example given by Equation (32) we obtain

S(1)(r, z) = S

c
[R0(r, c1 + z) + R0(r, c1 − z)

− R0(r, c2 + z) − R0(r, c2 − z)] ,

S(0)(r, z) = S

c

[
R−1(r, c1 + z) + R−1(r, c1 − z)

− R−1(r, c2 + z) − R−1(r, c2 − z)
]

,

(51)

and

T (1)(r, z) = S

c
[T0(r, c1 + z) − T0(r, c1 − z)

− T0(r, c2 + z) + T0(r, c2 − z)] ,

T (0)(r, z) = S

c

[
T−1(r, c1 + z) − T−1(r, c1 − z)

− T−1(r, c2 + z) + T−1(r, c2 − z)
]

,

(52)

where according to Equations (1.75)–(1.78) in [23],

R0(r, ζ ) =
∞∑

n=1

(−1)ne−knρ cos knζ = 1

2

[
sinh πρ

c

cosh πρ

c
− cos πζ

c

− 1

]
, (53)

R−1(r, ζ ) =
∞∑

n=1

(−1)n

kn

e−knρ cos knζ = 1

2
ρ − c

2π
ln

[
2 cosh

πρ

c
− 2 cos

πζ

c

]
,

and

T0(r, ζ ) =
∞∑

n=1

(−1)ne−knρ sin knζ = sin πζ

c

2 cosh πρ

c
− 2 cos πζ

c

, (54)

T−1(r, ζ ) =
∞∑

n=1

(−1)n

kn

e−knρ sin knζ = c

π
arctan

sin πζ

c

exp πρ

c
− cos πζ

c

,

with ρ = a − r.
From these expressions one may conclude that the shear stress r

�
z is continuous inside the

cylinder, and at the surface r = a it provides the representation for the discontinuous function
s(z). It is easy to verify that the functions S(1)(r, z) and S(0)(r, z) tend to infinity near the
points (a,±c1) and (a,±c2). However, due to multiple a − r the radial stress r

�
r remains

finite and continuous everywhere in the cylinder including these points. On the other hand,
the axial stress z

�
z and the circumferential stress φ

�
φ (not written here) really tend to ±∞ as

we approach the points of discontinuity of applied shearing loads. In practice this means that,
as the transition from the shearing stressed to unstressed surface becomes more abrupt, the
normal stresses in the neighbourhood become dangerously large.
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Table 1. Radial stress r
�
r/p0 at the boundary r = a of the cylinder for various

numbers (N, J ) of unknowns found by the improved reduction and simple reduction,
the infinite systems (38), (39) and (19), respectively

Exact Improved reduction Simple reduction

z/c p(z)/p0 (1,1) (5,5) (10,10) (20,20) (30,30) (40,40)

0·0 1·500 1·521 1·500 1·485 1·492 1·495 1·499

0·2 1·440 1·449 1·440 1·426 1·433 1·435 1·438

0·4 1·260 1·245 1·260 1·246 1·253 1·255 1·256

0·6 0·960 0·934 0·960 0·947 0·953 0·955 0·956

0·8 0·540 0·542 0·538 0·541 0·535 0·536 0·557

1·0 0·000 0·039 0·001 0·467 0·469 0·470 0·470

Now, all the series for the stresses are rapidly convergent everywhere and for practical
calculations only a small number of terms is sufficient to provide high accuracy. It is worth
noting that by calculating the difference r

�
r − z

�
z at the rim r = a, z = c, which according to

the boundary conditions (3) is equal to p(c), we arrive at Equation (39).

4. Results and discussion

The advantages of the method of superposition, namely relatively little calculation compared
to other approaches, and high accuracy in the determination of the stress field everywhere,
including the boundary near circumference of the cylinder, become more evident when two
typical examples of loading of the cylinder are considered. For both examples we choose
Filon’s parameters of the cylinder, 2c = πa, σ = 0·25.

Let us consider first a parabolically distributed normal loading

p(z) = 3

2
p0

(
1 − z2

c2

)
, (55)

with total intensity p0 = const. Shearing load is absent, that is s(z) = 0.
In Table 1 we present a comparison between two approaches to the solution of the infinite

system (19) – improved reduction and simple reduction, respectively – when satisfying the
prescribed boundary conditions for r

�
r at r = a. It can be seen that already five leading terms

in each series along with terms given by Equation (18) in the improved reduction algorithm
provide an excellent agreement with the prescribed parabolic distribution of the normal load.
At the same time, even forty terms in the simple reduction approach do not provide an accurate
satisfaction of the boundary condition at the rim. This inaccuracy can not be decreased by
increasing indefinitely the numbers N and J in the reduced finite system (19).

Inside the cylinder for 0 ≤ r ≤ 0·8a, |z| ≤ 0·8c, the values of the normal stresses defined
by both approaches do not differ significantly, see Table 2. Here also the developed approach
requires considerably fewer terms in the Fourier series. Moreover, using only the term with G

in (40), that is, putting N = J = 0, we obtain the values of r
�
r at r = 0 that differ by about

10 % from their true values. This conclusion appears to be also valid for general cases of
distributed normal loads, even when using the approximate value G(0) defined via the ‘zero’-
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Table 2. Radial stresses r
�
r/p0 at the axis r = 0 of

the cylinder for various numbers (N, J ) of unknowns
found by the improved reduction and simple reduction,
the infinite systems (38), (39) and (19), respectively

Improved reduction Simple reduction

z/c (0, 0) (1,1) (5,5) (10,10) (40,40)

0·0 1·378 1·461 1·455 1·465 1·458

0·2 1·329 1·393 1·392 1·406 1·400

0·4 1·185 1·196 1·203 1·212 1·213

0·6 0·943 0·892 0·902 0·915 0·907

0·8 0·605 0·531 0·532 0·562 0·540

Table 3. Table of stresses z
�
z/Q according to the present and Filon’s (in braces) analytical

expressions.

z/c r = 0 r = 0·2a r = 0·4a r = 0·6a r = a

0 0·661 (0·689) 0·694 (0·719) 0·796 (0·810) 0·959 (0·962) 1·115 ( 1·117)

0·1 0·642 (0·673) 0·673 (0·700) 0·770 (0·786) 0·935 (0·934) 1·168 ( 1·163)

0·2 0·592 (0·631) 0·618 (0·652) 0·698 (0·720) 0·855 (0·859) 1·344 ( 1·344)

0·3 0·530 (0·582) 0·548 (0·594) 0·606 (0·637) 0·730 (0·737) 2·001 ( 2·022)

0·4 0·469 (0·539) 0·482 (0·545) 0·522 (0·564) 0·604 (0·617) 1·434 ( 1·368)

0·5 0·410 (0·503) 0·421 (0·505) 0·450 (0·508) 0·488 (0·508) 0·551 ( 0·479)

0·6 0·341 (0·457) 0·351 (0·457) 0·372 (0·447) 0·371 (0·400) −0·325 (−0·409)

0·7 0·250 (0·384) 0·258 (0·361) 0·270 (0·360) 0·242 (0·278) −0·867 (−1·056)

0·8 0·142 (0·270) 0·147 (0·272) 0·151 (0·244) 0·113 (0·152) −0·184 (−0·357)

0·9 0·043 (0·145) 0·045 (0·141) 0·047 (0·121) 0·029 (0·060) −0·134 (−0·134)

1·0 −0·001 (0·000) 0·000 (0·000) 0·000 (0·000) 0·000 (0·000) 0·012 ( 0·000)

order Equation (39). Thus, for a rough estimate of the stresses inside the cylinder we can use
the ‘engineering’ analytical expressions (45) with G(0), putting aside the finite Fourier series.

Let us now turn to the Filon example of discontinuous tangential stress (4) with c1 =
c/3, c2 = 2c/3. The numerical values for the stresses are given in Table 3 and Table 4 in
dimensionless form divided by Q = 2cS/3a, the uniform tension at the flat ends which would
produce a pull equal to that due to the shear S.

The numerical results tabulated above are illustrated by curves presented in Figures 2–4.
Figure 2 shows that radial tensions of order 0·2Q near the middle section of the cylinder are
changed to pressures after passing the ring of tangential loading. It is important to note that
Filon’s solution (9) cannot provide the correct values of r

�
r in the region 0·75c < z < c

because of the choice κn in the system of trigonometric functions in the Fourier series. On
the other hand, the plots for axial z

�
z and tangential r

�
z stresses presented in Figures 3 and

4 show a reasonable agreement between our solution and Filon’s. Filon omitted the value
r = 0·8a, because all his series converge in this case inconveniently slowly, and no methods
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Table 4. Table of stresses r
�
z/Q according to the present and Filon’s (in braces) analytical

expressions.

z/c r = 0 r = 0·2a r = 0·4a r = 0·6a r = a

0 0·000 (0·000) 0·000 (0·000) 0·000 (0·000) 0·000 (0·000) 0·000 (0·000)

0·1 0·000 (0·000) 0·025 (0·021) 0·057 (0·051) 0·095 (0·089) 0·000 (0·000)

0·2 0·000 (0·000) 0·040 (0·033) 0·093 (0·082) 0·168 (0·155) 0·000 (0·000)

0·3 0·000 (0·000) 0·042 (0·033) 0·098 (0·081) 0·184 (0·165) 0·000 (0·000)

0·4 0·000 (0·000) 0·038 (0·026) 0·085 (0·063) 0·157 (0·132) 0·955 (0·955)

0·5 0·000 (0·000) 0·039 (0·025) 0·082 (0·057) 0·149 (0·119) 0·955 (0·955)

0·6 0·000 (0·000) 0·051 (0·037) 0·105 (0·081) 0·178 (0·149) 0·955 (0·955)

0·7 0·000 (0·000) 0·066 (0·058) 0·138 (0·123) 0·224 (0·205) 0·000 (0·000)

0·8 0·000 (0·000) 0·071 (0·077) 0·146 (0·156) 0·221 (0·231) 0·000 (0·000)

0·9 0·000 (0·000) 0·051 (0·089) 0·105 (0·170) 0·147 (0·219) 0·000 (0·000)

1·0 0·000 (0·000) 0·000 (0·092) 0·000 (0·172) 0·000 (0·210) 0·000 (0·000)

of approximation were available. In our calculations, Figure 4b clearly demonstrates how the
curve for the tangential stress at r = 0·6a with a double hump transforms while these two
humps rise and approach each other (see data for r = 0·8a) and ultimately turning into the
given rectangle.

The axial z
�
z stress at the curved surface of the cylinder r = a reveals a tendency of

unlimited increase or decrease near the points of discontinuity of the applied tangential stress,
as it was analytically predicted above.

Turning to the displacements u(r, z) and w(r, z), we observe that Filon found (see his
results in braces in Tables 5 and 6) that they are very much less than the surface contraction
uQ(a) and total end elongation wQ(c) (in fact, never exceeding 60 per cent) of the same
cylinder under a uniform tension Q over its plane ends, with

uQ(r) = −Qσ

E
r , wQ(z) = Q

E
z . (56)

Filon gave no explanation of this discrepancy and noted that the correction (in the somewhat
extreme case considered it may amount to as much as 30 per cent) should be applied to
the readings of the extensometer which usually measures the relative displacement of two
neighbouring points at the outer curved surface of the cylinder.

Our calculations, however, provide other data in Tables 5 and 6 that are in much better
correspondence with approximate ones according to Equations (56) near the unloaded region
near the middle of the cylinder. It appears that Filon [1] somewhere missed the factor 2 in his
calculations in Sections 7–9, but I am unable to reveal the source of that discrepancy. There-
fore, Diagrams 1 and 2 in [1], showing the distortion of the cross-sections under tangential
surface loading, seem to be incorrect.

5. Conclusion

Looking back upon the proposed improved version of the superposition method and some
results obtained by it, we see that it provides a direct and powerful algorithm for solving
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Table 5. Table of displacements u/uQ(a) according to the present and Filon’s (in braces)
analytical expressions.

z/c r = 0 r = 0·2a r = 0·4a r = 0·6a r = a

0·0 0·000 (0·000) 0·090 (·045) 0·213 (0·037) 0·404 (0·134) 1·056 (0·579)

0·1 0·000 (0·000) 0·088 (·039) 0·203 (0·029) 0·381 (0·112) 1·022 (0·549)

0·2 0·000 (0·000) 0·086 (·026) 0·188 (0·017) 0·329 (0·065) 0·932 (0·458)

0·3 0·000 (0·000) 0·096 (·020) 0·196 (0·028) 0·307 (0·045) 0·777 (0·185)

0·4 0·000 (0·000) 0·125 (·031) 0·252 (0·086) 0·380 (0·121) 0·821 (0·371)

0·5 0·000 (0·000) 0·170 (·057) 0·347 (0·177) 0·538 (0·273) 0·955 (0·496)

0·6 0·000 (0·000) 0·215 (·084) 0·445 (0·257) 0·700 (0·413) 1·100 (0·586)

0·7 0·000 (0·000) 0·250 (·093) 0·511 (0·280) 0·789 (0·445) 1·164 (0·591)

0·8 0·000 (0·000) 0·275 (·079) 0·547 (0·231) 0·805 (0·353) 1·064 (0·374)

0·9 0·000 (0·000) 0·313 (·045) 0·601 (0·128) 0·838 (0·188) 1·067 (0·181)

1·0 0·000 (0·000) 0·401 (·000) 0·752 (0·000) 1·001 (0·000) 1·136 (0·000)

Table 6. Table of displacements w/wQ(c) according to the present and Filon’s (in braces)
analytical expressions.

z/c r = 0 r = 0·2a r = 0·4a r = ·6a r = a

0·0 0·000 (0·000) 0·000 (0·000) 0·000 (0·000) 0·000 (0·000) 0·000 (0·000)

0·1 0·103 (0·057) 0·107 (0·060) 0·118 (0·070) 0·136 (0·087) 0·161 (0·110)

0·2 0·203 (0·111) 0·210 (0·117) 0·230 (0·135) 0·266 (0·167) 0·331 (0·229)

0·3 0·299 (0·162) 0·308 (0·169) 0·335 (0·192) 0·384 (0·237) 0·535 (0·382)

0·4 0·391 (0·211) 0·401 (0·219) 0·433 (0·245) 0·491 (0·295) 0·800 (0·592)

0·5 0·481 (0·260) 0·493 (0·268) 0·527 (0·295) 0·591 (0·347) 0·942 (0·671)

0·6 0·571 (0·309) 0·583 (0·317) 0·620 (0·344) 0·687 (0·395) 1·010 (0·688)

0·7 0·657 (0·355) 0·670 (0·364) 0·710 (0·390) 0·777 (0·437) 0·955 (0·574)

0·8 0·737 (0·393) 0·751 (0·402) 0·791 (0·427) 0·855 (0·467) 0·965 (0·517)

0·9 0·810 (0·418) 0·824 (0·427) 0·864 (0·450) 0·923 (0·482) 1·011 (0·497)

1·0 0·883 (0·427) 0·896 (0·435) 0·933 (0·458) 0·986 (0·487) 1·062 (0·492)

complicated axisymmetric biharmonic problems for the elastic finite cylinder. The method
permits one to obtain accurate numerical results, using only a few terms in the series on the
complete systems of trigonometric and Bessel functions, even for the case of discontinuous
tangential load. With sufficient perseverance, the method of superposition permits to address
the more complicated axisymmetric problem of a cylindrical specimen with an abrupt change
of radius in a testing machine (Figure 1). The algebraic work involved is rather cumbersome,
but the final formulae are believed to be rather simple for numerical evaluation. One can
argue, of course, that any currently available finite-element or boundary-element commercial
package can solve the given problem with significantly less effort. Nevertheless, the present
analytical treatment based upon the ‘first principles’ of the Fourier series could be useful as a
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Figure 2. Distribution of the radial stress r
�
r for the cylinder under a shearing pull. Solid line – r = 0; short

dashed line – r = 0·2a; long dashed dot line – r = 0·4a; long dashed double dot line – r = 0·6a. (a) Filon’s [1]
solution; (b) present analytical solution.

Figure 3. Distribution of the axial stress z
�
z for the cylinder under a shearing pull. Solid line – r = 0; short dashed

line – r = 0·2a; long dashed dot line – r = 0·4a; long dashed double dot line – r = 0·6a; long dashed triple dot
line – r = a. (a) Filon’s [1] solution; (b) present analytical solution.

benchmark example for testing the accuracy of any numerical scheme, especially near rims of
the cylinder and points of discontinuity of applied loadings.

However, the second problem nominated for the competition for the Grand Prix de Math-
ématiques about the three-dimensional equilibrium of an elastic finite parallelepiped under an
arbitrary system of loads nonuniformly distributed on its sides, the famous Lamé problem that
was also advanced 150 years ago in his twelfth lecture [24], still remains challenging.
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Figure 4. Distribution of the shear stress r
�
z for the cylinder under a shearing pull. Solid line – r = 0·2a; short

dashed line – r = 0·4a; long dashed dot line – r = 0·6a; long dashed triple dot line – r = 0·8a long dashed
double dot line – r = a. (a) Filon’s [1] solution; (b) present analytical solution.
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Appendix: Fourier and Dini expansions and sums in the closed form

The following Fourier and Dini expansions [17, 23] on the complete trigonometric and Bessel
functions are recorded here

λz
sinh λz

sinh λc
+ (1 − λc coth λc)

cosh λz

sinh λc
=

∞∑
n=1

(−1)n 4λk2
n

c(k2
n + λ2)2

cos knz , (A1)

z = −
∞∑

n=1

(−1)n 2

kn

sin knz ,
sinh λz

sinh λc
= −

∞∑
n=1

(−1)n 2kn

c
(
k2
n + λ2

) sin knz , (A2)

z
cosh λz

sinh λc
− c coth λc

sinh λz

sinh λc
=

∞∑
n=1

(−1)n 4λkn

c
(
k2
n + λ2

)2 sin knz , (A3)

r
I1(kr)

I1(ka)
+

[
2

k
− a

I0(ka)

I1(ka)

]
I0(kr)

I1(ka)
=

∞∑
j=1

4λ2
j

a(λ2
j + k2)2

J0(λj r)

J0(λja)
, (A4)

I0(kr)

I1(ka)
= 2

ka
+

∞∑
j=1

2k

a(λ2
j + k2)

J0(λj r)

J0(λja)
, (A5)
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a
I0(ka)

I1(ka)

I0(kr)

I1(ka)
− r

I1(kr)

I1(ka)
= 4

k2a
+

∞∑
j=1

4k2

a(λ2
j + k2)2

J0(λjr)

J0(λja)
, (A6)

with kn = nπ

c
and λj is a nonzero root of the equation J1(λja) = 0, are used in the main text.

Also, the following sums

∞∑
n=1

4λ2(
k2
n + λ2

)2 = c

λ

(
coth λc + λc

sinh2 λc
− 2

λc

)
, (A7)

∞∑
n=1

4k2
n(

k2
n + λ2

)2 = c

λ

(
coth λc − λc

sinh2 λc

)
, (A8)

∞∑
j=1

4k2

(λ2
j + k2)2

= a2

[
I 2

0 (ka)

I 2
1 (ka)

− 1

]
− 4

k2
, (A9)

∞∑
j=1

4λ2
j

(λ2
j + k2)2

= a2

[
1 − I 2

0 (ka)

I 2
1 (ka)

]
+ 2aI0(ka)

kI1(ka)
, (A10)

which can be obtained by putting z = c and r = a in uniformly convergent series (57), (60),
and (62).

By putting in (64) and (66) λ → 0 and k → 0, respectively, the values of sums

∞∑
n=1

1

k2
n

= c2

6
,

∞∑
j=1

1

λ2
j

= a2

8
(A11)

are obtained.
The asymptotic behaviour when k → ∞ is

I0(k)

I1(k)
= 1 + 1

2k
+ 3

8k2
+ O

(
1

k3

)
,

I 2
0 (k)

I 2
1 (k)

= 1 + 1

k
+ 1

k2
+ O

(
1

k3

)
, (A12)

which can be obtained from semi-convergent expansions of the modified Bessel functions
I0(k) and I1(k).
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